网上有关“井斜角的计算方式”话题很是火热,小编也是针对井斜角的计算方式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
井斜计算
最新国内外石油勘探开采技术标准大全
第一节 定向井井身参数和测斜计算
一.定向井的剖面类型及其应用
定向钻井就是“使井眼按预定方向偏斜,钻达地下预定目标的一门科学技术”。定向钻井的应用范围很广,可归纳如图9-l所示。
定向井的剖面类型共有十多种,但是,大多数常规定向井的剖面是三种基本剖面类型,见图9-2,称为“J”型、“S”型和连续增斜型。按井斜角的大小范围定向井又可分为:
常规定向井井斜角<55°
大斜度井井斜角55~85°
水平井井斜角>85°(有水平延伸段)
二.定向井井身参数
实际钻井的定向井井眼轴线是一条空间曲线。钻进一定的井段后,要进行测斜,被测的点叫测点。两个测点之间的距离称为测段长度。每个测点的基本参数有三项:井斜角、方位角和井深,这三项称为井身基本参数,也叫井身三要素。
1.测量井深:指井口至测点间的井眼实际长度。
2.井斜角:测点处的井眼方向线与重力线之间的夹角。
3.方位角:以正北方向线为始边,顺时针旋转至方位线所转过的角度,该方向线是指在水平面上,方位角可在0—360°之间变化。
目前,广泛使用的各种磁力测斜仪测得的方位值是以地球磁北方位线为准的,称为磁方位角。磁北方向线与正北方向线之间有一个夹角,称磁偏角,磁偏角有东、西之分,称为东或西磁偏角,真方位的计算式如下:
真方位=磁方位角十东磁偏角
或 真方位=磁方位角一西磁偏角
公式可概括为“东加西减”四个字。
方位角也有以象限表示的,以南(S)北(N)方向向东(E)西(W)方向的偏斜表示,如N10°E,S20°W。在进行磁方位校正时,必须注意磁偏角在各个象限里是“加上”还是“减去”,如图 9-3所示。
4.造斜点:从垂直井段开始倾斜的起点。
5.垂直井深:通过井眼轨迹上某点的水平面到井口的距离。
6.闭合距和闭合方位
(l)闭合距:指水平投影面上测点到井口的距离,通常指靶点或井底的位移,而其他测点的闭合距离可称为水平位移。
(2)闭合方位:指水平投影响图上,从正北方向顺时针转至测点与井口连线之间的夹角。
7.井斜变化率和方位变化率:井斜变化率是指单位长度内的井斜角度变化情况,方位变化率是指单位长度内的方位角变化情况,均以度/100米来表示(也可使用度/30米或度/100英尺等)。
8.方位提前角(或导角):预计造斜时方位线与靶点方向线之间的夹角。
三.狗腿严重度
狗腿严重是用来测量井眼弯曲程度或变化快慢的参数(以度/100英尺表示)。可用解析法、图解法、查表法、尺算法等来计算狗腿严重度k。
1.第一套公式
2.第二套公式
cosγ=cosa1cosa2+sina1sina2 cosΔj………………………………………(9-3)
本式是由鲁宾斯基推导出来的,使用非常普遍。美国人按上式计算出不同的a1、a2和Δj值下的狗腿角γ值,并列成表格,形成了查表法。
3.第三套公式
γ——两测点间的狗腿角。
若将三套公式作比较,第一套公式具有普遍性,适合于多种形状的井眼,第二套只适用于平面曲线的井眼(即二维井型),第三套是近似公式,用于井斜和方位变化较小的情况。
四.测斜计算的主要方法
测斜计算的方法可分为两大类二十多种。一类是把井眼轴线视为由很多直线段组成,另一类则视其为不同曲率半径的圆弧组成。计算方法多种多样,测段形状不可确定。主要的计算方法有正切法、平衡正切法、平均角法、曲率半径法、最小曲率法、弦步法和麦库立法。从计算精度来讲,最高的是曲率半径法和最小曲率法,其次是平均角法。以下各图和计算公式中下角符号1、2分别代表上测和下测点。
1.平均角法(角平均法)
此法认为两测点间的测段为一条直线,该直线的方向为上下两测点处井眼方向的矢量和方向。
测段计算公式:
2.平衡正切法
此法假定二测点间的井段为两段各等于测段长度一半的直线构成的折线,它们的方向分别与上、下两测点处的井眼方向一致。
如图9-6,计算式为:
3.曲率半径法(圆柱螺线法)
此法假设两测点间的测段是条等变螺旋角的圆柱螺线,螺线在两端点处与上、下二测点处的井眼方向相切。
如图9-7,测段的计算公式有三种表达形式。
(1)第一种表达形式
(9-13)~(9-16)式中:
这四个公式是最常用的计算公式:
(3)第三种表达形式
(4)曲率半径法的特殊情况处理
③第三种特殊情况,α1≠α2,且其中之一等于零。此时,按二测点方位角相等来处理,然后代入第二种特殊情况的计算式中。
4.最小曲率法
最小曲率法假设两测点间的井段是一段平面的圆弧,圆弧在两端点处与上下二测点处的井眼方向线相切。测段计算如图9-8。
测段计算公式如下:
令fM=(2/γ)×tg(γ/2),fM是个大于1但很接近1的值。在狗腿角γ足够小的情况下,可近似认为fM=1,这时上述四个计算公式就完全变成平衡正切法的公式了,它是对平衡正切法公式的校正。
ΔS′是切线1M和M2在水平面上的投影之和,即ΔS′=1′M′+ M′2′。ΔS′并不是测段的水平投影长度ΔS。要作出井身垂直剖面图,需要求出ΔS,而最小曲率法却求不出ΔS,这是最小曲率法的缺点。为了作出垂直剖面图,可用下式近似地求出ΔS′:
……………………………………………………(9-39)
第二节 定向井剖面设计
在开钻前认真进行设计,可以大大节约定向钻井的成本。影响井眼轨迹的因素很多,其中一些因素很难进行估算(如在某些地层中的方位漂移情况等)。因此,在同一地区得到的钻井经验很重要,这些经验可以在其他井设计过程中起重要的参考作用。
一.设计资料
要进行一口定向井的轨道设计工作,作业者至少应提供靶点的垂深、水平位移和方位角,或提供井口与靶点的座标位置,通过座标换算,计算出方位角和水平位移。此外,定向井工程师还要收集下列资料:
1.作业区域和地理位置。通过作业区域,通常可以找到该地区已完井的钻井作业资料(野猫井除外),并对地层情况、方位漂移有一定的了解,根据地理位置,可以计算或查得到地磁偏角。
2.地质设计书和井身结构。了解有关地层压力、地温梯度、地层倾角、走向、岩性、断层,可能遇到的复杂情况,以及油藏工程师的特殊要求等。
3.作业者对造斜点、造斜率、增(降)斜率的要求,以及安全圆柱、最大井斜等井身质量的要求。
4.了解钻井承包商的情况,如泥浆泵性能,井下钻具组合各组件的基本情况等。
二.设计原则
1.能实现钻定向井的目的
定向井设计首先要保证实现钻井目的,这是定向井设计的基本原则。设计人员应根据不同的钻探目的对设计井的井身剖面类型、井身结构、钻井液类型、完井方法等进行合理设计,以利于安全、优质、快速钻井。
如救险井的钻井目的是制服井喷和灭火,保护油、气资源。因此,救险井的设计应充分体现其目的:一是靶点的层位选择合理。二是靶区半径小(小于10米),中靶要求高;三是尽可能选择简单的剖面类型,以减小井眼轨迹控制和施工难度,加快钻井速度。四是井身结构、井控措施等应满足要求。
2.尽可能利用方位的自然漂移规律在使用牙轮钻头钻进时,方位角的变化往往有向右增加的趋势,称为右手漂移规律。如图9-9所示,靶点为T,设计方位角为j′。若按j′定向钻进,则会钻达T′点,只有按照j角方向钻进,才会钻达目标点T。Δj角称为提前角,提前角的大小,要根据地区的实钻资料,统计出方位漂移率来确定,我国海上开发井一般取2~7度。
目前流行的PDC钻头(如RC426型等),对方位右漂具有较好的抑制效果。在地
层倾角小、岩性稳定时,PDC钻头具有方位左漂的趋势,这主要是由于PDC钻头的切削方式造成的。因此,要使用PDC钻头钻进的定向井,提前角要适当地小一点。
3.根据油田的构造特征,有利于提高油气产量,提高投资效益。
4.有利于安全、优质和快速钻井,满足采油和修井的作业要求。
三.剖面设计中应考虑的问题
1.选择合适的井眼曲率
井眼曲率不宜过小,这是因为井眼曲率限制太小会增加动力钻具造斜井段、扭方位井段和增(降)斜井段的井眼长度,从而增大了井眼轨迹控制的工作量,影响钻井速度。
井眼曲率也不宜过大,否则钻具偏磨严重、摩阻力增大和起下钻困难,也容易造成键槽卡钻,还会给其他作业(如电测、固井以及采油和修井等)造成困难。因此,在定向井中应控制井眼曲率的最大值,我国海上定向井一般取7~16°/100米,最大不超过20°/100米。不同的井段要选用不同的井眼曲率,具体如下:
井下动力钻具造斜的井眼曲率取:7~16°/100米。
转盘钻增斜的增斜率取:7~12°/100米。
转盘钻降斜的降斜率取:3~8°/100米。
井下动力钻具扭方位的井眼曲率取:7~14°/100米。
导向马达调方位或增斜的井眼曲率取:5~12°/100米。
说明:随着中曲率大斜度井和水平井的迅速发展,对普通定向井的井眼曲率(或狗腿严重度)的限制越来越少,API标准中已不再规定常规定向井的狗腿严重度。
为了保证起下钻顺利和套管安全,必须对设计剖面的井眼曲率进行校核,以限制最大井眼曲率的数值。井下动力钻具造斜和扭方位井段的井眼曲率Km应满足下式:
Dc――套管外径,厘米。
2.井眼尺寸
目前常规的定向井工具能满足152~445毫米(6~171/2英寸)井眼的定向钻井要求,一般地说,大尺寸井眼比较容易控制轨迹,但由于钻铤的尺寸也较大,形成弯曲所需的钻压较大,小井眼要使用更小、更柔的钻具,而且地层因素对轨迹的影响也较大。因此小井眼的轨迹控制更困难一些。
在常规的井眼尺寸中,大多数定向井可采用直井的套管程序。如果实钻井眼轨迹较光滑,没有较大的狗腿,那么即使在大井斜井段,也能较顺利地进行下套管作业。当然,在斜井段,应在套管上加扶正器以支撑套管,避免在下套管过程中发生压差卡钻,同时提高固井质量。另外,在大斜度井段,可根据井段长度和作业时间,决定是否使用厚壁套管。
3.钻井液设计:
(1)定向井钻井液设计十分重要,钻井液应有足够的携砂能力和润滑性,以减少卡钻的机会;
(2)钻井液性能控制对减少定向井钻柱拉伸与扭矩也很重要;
(3)钻井液中应加润滑剂,钻井液密度与粘度必须随时控制。
(4)如果用水基钻井液,那么在正常压力井段,应使用高排量和低固相含量的钻井液,这样有利于清洁井眼;
(5)水基钻井液应具有良好的润滑性能,以减少钻具摩阻和压差卡钻;然而在海上钻井,一定要避免污染问题。
(6)如果有异常高压井段要求钻井液密度达到1.45克/厘米3或更高,那么应考虑在钻开该高压地层前下一层保护套管,以封固所有正常压力井段。
4.造斜点的选择
造斜点的选择要适当浅些,但是在极浅的地层中造斜时,容易形成大井眼。同时,由于地层很软,造斜完成后下入稳斜钻具时,要特别小心,以免出现新井眼,尤其是在稳斜钻具刚度大或造斜率较高时。通常地说,浅层造斜比深层造斜容易一些,因为深层地层往往胶结良好,机械钻速低,需花费较长的造斜时间。
另外,造斜点通常选在前一层套管鞋以下30~50米处,以免损坏套管鞋,同时减少水泥掉块产生卡钻的可能性。
在深层地层造斜时,应尽量在大段砂层中造斜,因为砂层的井眼稳定,钻速较快,而页岩段较易受到冲蚀,钻速较低,而且在以后长时间钻井作业,容易在造斜段形成键槽而可能导致卡钻。
5.靶区形状和范围
靶区形状与范围通常由地质构造、产层位置决定,并考虑油田油井的分布情况,靶区大小是由作业者确定的。通常认为,鞍区范围不能定得太小,很小的靶区范围不仅会增加作业成本,同时也会增加调整方位的次数,造成井眼轨迹不平滑,增加转盘扭矩,同时也增加产生健槽卡钻的可能性。
通常,靶区形状为圆形(严格地讲,应该是球形)。浅井和水平位移小的定向井,其靶区范围小一些,一般靶区半径30~50米,而深井和水平位移大的井,靶区范围可以适当地大一些,一般靶区半径为50~70米。
6.造斜率和降斜率选择
常规定向井的造斜率为7~14°/100米,如果需要在浅层造斜并获得较大的水平位移,造斜率可提高到14~16°/100米。但是,浅层的高造斜率容易出现新井眼,也容易对套管产生较大的磨损。因此,浅层造斜通常选择较低的造斜率,而深层造斜(1000米~2000米)可选择较高的造斜率。
对于“S”型井眼,通常把降斜率选在3~8°/100米,如果降斜后仍然要钻较长的井段,则必须采用较小的降斜率平缓降斜,以避免键槽卡钻,同时,可降低钻进时的摩阻力。
7.最大井斜角
常规定向井的最大井斜角,一般在15~45°,如果井斜太小,则井眼的井斜和方位都较难控制。井斜大于60°时,钻具的摩阻力将大大增加。
8.允许的方位偏移与极限
(1)定向钻进时,初始造斜方向通常在设计方位的左边(即选定导角),然后通过自然漂移钻达靶区,井眼轨迹是一条空间曲线。
(2)但是对导角也有一个限制,在井眼密集的井网中,要求定向井轨迹保持在安全圆柱内,以避免与邻井相碰。
(3)同样,由于油藏特性和地质地层条件,也对导角的大小有一定的限制。
9.井身剖面类型
在满足设计和工艺要求的前提下,尽可能缩短井段长度,因为井段短则钻井时间短。在设计井身剖面形状时,要考虑井身结构,造斜点一般选在套管鞋以下30~50米处。目前,我国海上定向井的井身剖面通常由作业者决定,往往选择“J”型剖面。
四.剖面设计
1.设计步骤:
(l)选择剖面类型;
(2)确定增斜率和降斜率,选择造斜点;
(3)计算剖面上的未知参数,主要是最大井斜角;
(4)进行井身计算,包括各井段的井斜角、水平位移、垂深和斜深;
(5)绘制垂直剖面图和水平投影图。
井身剖面的设计方法有试算法、作图法、查图法和解析法四种。我国海洋定向井通常采用解析法,并使用计算机完成。剖面设计完成以后,应向作业者提供下列资料:
(1)总体定向钻井方案和技术措施。
(2)剖面设计结果,包括设计条件、计算结果、垂直剖面图和水平投影图。
(3)测斜仪器类型和该地区的磁偏角,以及测斜计算方法;
(4)设备和工具计划。
2.二维定向井设计(解析法)
解析法是根据给出的设计条件,应用解析公式计算出剖面上各井段的所有井身参数的井身设计方法。在使用计算机的条件下,还可同时给出设计井身的垂直投影图和水平投影图。
解析法进行井身剖面设计所用公式如下(用于三段制J型、五段制S型和连续增斜型剖面)。
(1)求最大井斜角αmax。
(2)各井段的井身参数计算:
①增斜段
②稳斜段
③降斜段
④稳斜段
⑤总井深L
(3)设计计算中特殊情况的处理
①当Ho2+So2-2RoSo=0时,表示该井段设有稳斜段,此时可由下面三个公式中任一个公式来求最大斜角αmax:
②当2Ro-So=0时,可用下式求最大井斜角αmax:
③当Ho2+So2-2RoSo<0,说明此种剖面不存在,此时应该改变设计条件,改变造斜点深度、增斜率和降斜率或改变目标点坐标。
井身剖面设计计算结果应整理列表,并校核井身长度和各井段井身参数是否符合设计要求,还应该校核井上曲率,井身剖面最大曲率应小于动力钻具和下井套管抗弯曲强度允许的最大曲率。
目前,应用计算机程序进行井身剖面设计时,设计结果列表和均可由打印机和绘图仪自动完成。
4.设计方法举例
例 某定向井设计全井垂深H=2-000米(靶点),上部地层300米至350米是流砂层,1000米至1050米有一高压水层,作出井身剖面设计。
井口座标 X1:3 246 535.0 Y1:2 054 875.0
井底座标 X2:3 245 972.95 Y2:2 054 665.0
先根据井口与井底座标,计算出水平位移和目标方位。
(1)根据提供的地质资料,在进行剖面设计时,应设法使动力钻具造斜的井段和增斜的井段避开流砂层和高压水层。
(2)对于钻井工艺及其它限制条件,在满足(l)项条件的前提下,应选择较简单的剖面类型。
(3)剖面类型选用“直一增一稳”三段制井身剖面。此种剖面简单,地面井口至目标点的井身长度短,有利于加快钻井速度。
(4)选择造斜点。根据垂直井深和水平位移的关系,造斜点应选在350米至600米间。如选在1050米以下,会使井斜角太大,是不合理的。
因300米至350米是流砂层,在井深结构设计时应用套管封固,以利于定向造斜,防止流砂层漏失、垮塌等复杂情况出现。造斜点应选在套管鞋以下不少于50米的地方为宜。因此,造斜点与井口之间井眼长度不应小于450米。
又因1000米至1050米是高压水层,为了下部井段能顺利钻进,也应考虑下入一层中间套管封住高压水层。为了减少井下复杂情况和有利于定向井井眼轨迹控制,在进行套管设计时,应避免套管鞋下在井眼曲率较大的井段中,中间套管的下入深度应进入稳斜井段150米左右为宜。在考虑上述因素后,造斜点的位置应在高压水层以上不少于400米处,也就是造斜点与井口之间的井眼长度不应大于600米。
经过上述的分析,如果造斜点应在450米至600米之间选择,那么,把造斜点确定在500米处是比较合理的。
(5)选择造斜率K为7°/100米。根据造斜率计算造斜井段的曲率半径R。
(6)计算最大井斜角αmax
R——造斜段曲率半径,米。
把已知条件代入上式得:
αmax=24.4°
(7)分段井眼计算:
增斜段
稳斜段
4.三维定向井
设计的井眼轴线,既有井斜角的变化,又有方位角的变化,这类井段为三维定向井,实际作业中,有时会碰到三维定向井的问题,大体上分为三种情况。
第一种情况 原设计为两维定向井,在实钻中偏离了目标方位,如果偏得不多,只要调整钻具组合或扭一次方位就可以了。严格地说,实钻的定向井轨迹,都有井斜角的变化和方位角的变化,这种三维定向井可以简化为二维的。
第二种情况 在地面井位和目标点确定的情况下,在这两点的铅垂平面内,存在着不允许通过或难以穿过的障碍物,不能在铅垂平面上设计轨道,需要绕过障碍,设计绕障三维定向井。在海上丛式井经常碰到这类井。
第三种情况在地面井位确定的情况下,要钻多目标井。地面井位和多目标点不在同一铅垂平面内,只有井斜角和方位角都变化,才能钻达设计的多个目标点。
三维定向井的轨迹设计和测斜计算很复杂,通常使用计算机软件完成这些工作。
第三节 井眼轨迹控制技术
井眼轨迹控制的内容包括:优化钻具组合、优选钻井参数、采用先进的井下工具和仪器、利用计算机进行井眼轨迹的检测预测、利用地层的方位漂移规律、避免井下复杂情况等等。
轨迹控制贯穿钻井作业的全过程,它是使实钻井眼沿着设计轨道钻达靶区的综合性技术,也是定向井施工中的关键技术之一。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术,其中直井段的控制技术见第七章第四节。
一.定向选斜井段
初始造斜方法有五类,即井下马达和弯接头定向、喷射法、造斜器法、弯曲导管定向、倾斜钻机定向。目前,我国海洋定向井一般采用第一种方式,常用造斜钻具组合为:钻头十井下马达十弯接头十非磁钻铤十普通钻铤( 0~30米)十挠性接头十震击器十加重钻杆。
这种造斜钻具组合是利用弯接头使下部钻具产生一个弹性力矩,迫使井下动力钻具驱动钻头侧向切削,使钻出的新井眼偏离原井眼轴线,达到定向造斜或扭方位的目的。
造斜钻具的造斜能力主要与弯接头的弯角和动力钻具的长度有关。弯接头的弯角越大,动力钻具长度越短,造斜率也越高。
弯接头的弯角应根据井眼大小、井下动力钻具的规格和要求造斜率的大小选择。现场常用弯接头的弯角为1.5~2.25度,一般不大于2.5度。弯接头在不同条件下的造斜率见第四节。
造斜钻具组合使用的井下动力钻具型号应根据造斜井段或扭方位井段的井深选择。使用井段在2000米以内,一般采用涡轮钻具或普通螺杆钻具,深层走向造斜或扭方位应使用耐高温的多头螺杆钻具。
造斜钻具组合、钻井参数和钻头水眼应根据厂家推荐的钻井参数设计。
由于井下动力钻具的转速高,要求的钻压小〔一般为29.4~ 78.4千牛(3~8吨)〕,因此,使用的钻头不宜采用密封轴承钻头,尤其是在浅层,可钻性好的软地层应使用铣齿滚动轴承钻头或合适的PDC钻头。
根据测斜仪器的种类不同,分为四种定向方式:
1.单点定向
此方法只适用造斜点较浅的情况,通常井深小于1000米。因为造斜点较深时,反扭角很难控制,且定向时间较长。施工过程如下:
(l)下入定向造斜钻具至造斜点位置(注意:井下马达必须按厂家要求进行地面试验)。
(2)单点测斜,测量造斜位置的井斜角,方位角,弯接头工具面;
(3)在测斜照相的同时,对方钻杆和钻杆进行打印,并把井口钻杆的印痕投到转盘面的外缘上,作为基准点;
(4)调整工具面(调整后的工具面是:设计方位角十反扭角)。锁住转盘、开泵钻进;
(5)定向钻进。每钻进2~4个单根进行一次单点测斜,根据测量的井斜角和方位角及时修正反扭矩的误差,并调整工具面;
(6)当井斜角达到8~10度和方位合适时,起钻换增斜钻具,用转盘钻进。在单点定向作业中要注意:
①在确定了反扭角和钻压后,要严格控制钻压的变化范围,通常在预定钻压±19.6千牛(2吨)内变化;
②每次接单根时,钻杆可能会转动一点,注意转动钻杆的打印位置至预定位置;
③如果调整工具面的角度较大(>90度),调整后应活动钻具2~3次(停泵状态),以便钻杆扭矩迅速传递。
2.地面记录陀螺(SRO)定向
在有磁干扰环境的条件下(如套管开窗侧钻井)的定向造斜,需采用SRO定向。这种仪器可将井下数据通过电缆传至地面处理系统,并显示或用计算机打印出来,直至工具面调整到预定位置,再起出仪器,施工过程如下:
(l)选择参照物,参照物应选择易于观察的固定目标,距井40米左右;
(2)预热陀螺不少于15分钟,工作正常才可下井;
(3)瞄准参照物,并调整陀螺初始读数;
(4)接探管,连接陀螺外筒,再瞄准参照物,对探管和计算机初始化;
(5)下井测量,按规定作漂移检查;
(6)起出仪器坐在井口,再次瞄准参照物记录陀螺读数;
(7)校正陀螺漂移,确定测量的精度;
(8)定向钻进。
3.有线随钻测斜仪(SST)定向
造斜钻具下到井底后,开泵循环半小时左右,然后接旁通头或循环接头。把测斜仪的井下仪器总成下入钻杆内,使定向鞋的缺口坐在定向键上。定向造斜时,可从地面仪表直接读出实钻井眼的井斜、方位和工具面,司钻和定向井工程师要始终跟踪预定的工具面方向,保持井眼轨迹按预定方向钻进。
4.随钻测量仪(MWD)定向
MWD井下仪器总成安装在下部钻具组合的非磁钻铤内,其下井前要调整好工作模式和传输速度,并准确地测量偏移值,输入计算机。仪器在井下所测的井眼参数通过钻井液脉冲传至地面,信息经地面处理后,可迅速传到钻台。MWD不仅可用于定向造斜,也可用于旋转钻进中的连续测量,是一种先进的测量仪器。
5.定向造斜中的注意事项:
(1)如果定向作业前的裸眼段较长,应短起下钻一趟,保证井眼畅通。
(2)井下马达下井前应在井口试运转,测量轴承间隙;记录各种参数,工作正常方可下井;
(3)MWD等仪器下井前,必须输入磁场强度、磁倾角等参数;
(4)定向造斜钻进,要按规定加压,均匀送钻,以保持恒定的工具面。
(5)造斜钻进或起下钻,用旋扣钳或动力水龙头上卸扣,不得用转盘上卸扣;
(6)起钻前方位角必须在20~30米井段内保持稳定,且保证预定的提前角。目前,“一次造斜
到位法”也经常在我国海洋定向井中使用,这种方法适用于造斜点较浅,且机械钻速很快的造斜井段,常常配合使用随钻测量仪。
(7)井下马达出井时,按规定程序进行清洗、保养。
狗腿度(狗腿严重度,全角变化率)K,全角变化率定义为“单位井段长度井眼轴线在三维空间的角度变化”,而单位井段长度取决于生产实际中测斜需要。它既包含了井斜角的变化又包含着方位角的变化。常用“°/100m”表示,实际生产工作中常用“°/30m”来表示。如果一点超3度甲方罚款了事,1点超5度也有填井的危险,在这过程当中看甲方对井队是怎么要求了。各油田要求可能不一,以上仅供参考。
井壁不稳定的实质是力学不稳定。当井壁岩石所受的应力超过其本身的强度就会发生井壁不稳定。其原因十分复杂,就其主要原因可归纳为力学因素、物理化学因素和工程技术措施3个方面,但后两个因素最终均因影响井壁应力分布和井壁岩石的力学性能而造成井壁不稳定。
3.3.1 力学因素
3.3.1.1 原地应力状态
原地应力状态是指在发生工程扰动之前就已经存在于地层内部的应力状态,也简称为地应力。一般认为它的三个主应力分量是铅垂应力分量、最大水平主应力分量和最小水平主应力分量。
地应力的铅垂应力分量通常称为上覆岩层压力,主要由上部地层的重力产生的。国内外研究表明,水平地应力的大小受上覆岩层压力、地层岩性、埋藏深度、成岩历史、构造运动情况等诸多因素的影响。其中上覆岩层压力的泊松效应和构造应力是主要影响因素。
由于多次构造运动的结果,在岩石内部形成了十分复杂的构造应力场。根据地质力学的观点,构造应力大多以水平方向为主,设两个主构造应力分量分别为σh、σH。则总的水平主应力分量为上覆岩层压力泊松效应产生的压应力与构造应力之和。
若没有构造运动,水平地应力仅由上覆岩层压力的泊松效应引起,为均匀水平地应力状态。一般情况下存在构造运动,且两个水平主方向上构造应力的大小不等。因此,在一般情况下,地应力的三个主应力分量的大小是不相等的。由声发射法、差应变法等室内实验方法和应力释放法、水力压裂法等现场试验方法可以确定出地应力的大小和方向。
3.3.1.2 地层被钻开后所引起的井眼围岩应力状态的变化
地层被钻开之前,地下的岩石受到上覆压力、水平方向地应力和孔隙压力的作用,井壁处的应力状态即为原地应力状态,且处于平衡状态。孔隙压力指地下岩石孔隙内流体压力。在正常沉积环境中,地层处于正常的压实状态,孔隙压力保持为静液柱压力,即为正常地层压力,压力系数为1.0。在异常的压实环境中,当孔隙压力大于正常地层压力时称为异常高压地层,压力系数大于1.0。
当井眼被钻开后,地应力被释放,井内钻井液作用于井壁的压力取代了所钻岩层原先对井壁岩石的支撑,破坏了地层和原有应力的平衡,引起井壁周围应力的重新分布。
进一步的研究表明,井眼围岩的应力水平与井眼液柱压力有关。若钻井液密度降低,井眼围岩差应力(径向应力减小,切向应力增大)水平就升高。当应力超过岩石的抗剪强度时,就要发生剪切破坏(对于脆性地层就会发生坍塌,井径扩大;而对于塑性地层,则发生塑性变形,造成缩径)。相反地,当钻井液密度升至一定值后,井壁处的切向应力就会变成拉应力,当拉伸应力大于岩石的抗拉强度时,就要发生拉伸破坏(表现为井漏)。
3.3.1.3 造成井壁力学不稳定的原因
钻井过程中保持井壁处于力学稳定的必要条件是钻井液液柱压力必须大于地层坍塌压力,且钻井液的实际当量密度低于与地层破裂压力对应的当量钻井液密度。坍塌压力是指井壁发生剪切破坏的临界井眼压力,此时的钻井液密度称为坍塌压力的当量钻井液密度。钻井过程中井壁出现力学不稳定而造成井塌的主要原因可归纳为以下几个方面。
(1)钻进坍塌地层时钻井液密度低于地层坍塌压力的当量钻井液密度
井壁不稳定包括缩径与井壁坍塌,其实质是力学问题。孔隙压力异常不仅发生在储层中,而且在我国大量所钻遇的泥页岩地层中也较普遍地存在。在地应力作用地区,非均质的地应力对井壁稳定会产生很大的影响。长期以来,地质部门设计钻井液密度均依据所钻遇油气水层时的压力系数,而未考虑易坍塌地层可能存在异常孔隙压力与地应力,以及所造成的高地层坍塌压力对井壁稳定的影响。在实际钻井过程中,同一裸眼井段部分地层的坍塌压力往往大于油气水层的孔隙压力。因此,依据地质设计所确定的钻井液密度在高坍塌压力地层钻进时,井筒中钻井液液柱压力就不足以平衡地层坍塌压力(对盐膏层和含盐膏泥岩则为发生塑性变形的压力),就会造成所钻地层处于力学不稳定状态,引起井壁坍塌。
(2)起钻时的抽吸作用造成作用于井壁的钻井液压力低于地层坍塌压力
在起钻过程中,由于未及时灌注钻井液、钻井液塑性黏度和动切力过高以及起钻速度过快等均会产生高的抽吸压力。这种抽吸作用使钻井液作用于井壁的压力下降,当其低于地层坍塌压力时就会发生井塌。此外,在裸眼井段,如果所钻的上部地层中存在大段含蒙脱石或伊蒙无序间层的泥岩,而在钻进下部地层时,如钻头在井下工作时间过长(超过两天以上)又没有起下钻,则含蒙脱石或伊蒙无序间层的泥岩就会吸水膨胀而造成井径缩小,起钻至此井段则发生“拔活塞”,环空灌不进钻井液,从而产生很大的抽吸压力并形成负压差,严重时便会抽塌下部地层。例如吉林油田乾安构造在钻探初期,绝大部分井均由于上部嫩3、4、5层段泥岩缩径(井径平均缩小6%~8%),起钻时发生严重抽吸,从而抽塌下部嫩2、1等层段的泥岩层,平均井径扩大率高达32%~84%,处理井塌时间长达半个多月。
(3)井喷或井漏导致井筒中液柱压力低于地层坍塌压力
钻井过程中如发生井喷或井漏,均会造成井筒中液柱压力下降。当此压力小于地层坍塌压力时,就会出现井塌。
(4)钻井液密度过低不能控制岩盐层、含盐膏软泥岩和高含水软泥岩的塑性变形
当岩盐层、含盐膏软泥岩和高含水的软泥岩等地层被钻开后,如所使用的钻井液密度过低,就会发生塑性变形。由于上述地层均是具有塑性特点的地层,当其埋藏较深而被钻穿后,它们的高度延展性能几乎可以传递上覆地层的全部覆盖负荷的重量。若当时的钻井液液柱压力不足以控制住这种作用时,就会引起塑性变形,使井径缩小,这就是上述岩层所具有的蠕变特性。所谓蠕变是指材料在恒应力状态下应变随时间延长而增加的现象。通常岩石的弹性变形也会引起缩径,但弹性变形的时间较短,且变形量小。岩盐在深部高温高压作用下,由于具有蠕变特性,即使井壁上的应力仍处于弹性范围,也会导致井眼随时间而逐渐缩小。根据国内外对岩盐蠕变的研究,可将其分为以下3个阶段(图3.5):
图3.5 岩石的广义蠕变曲线
1)初始蠕变(又称过渡蠕变)。此阶段在应变时间曲线上,岩石初始蠕变速率很高,随后速率变缓,其原因是应变硬化速度大于材料中晶粒的位错运动速度。
2)次级蠕变(又称稳态蠕变)。此阶段硬化速度和位错速度达到平衡。对于岩盐层,井眼的收缩是最重要的蠕变阶段。
3)第三阶段蠕变(又称不稳定蠕变)。当应力足够大时,会在晶粒界面及矿物颗粒界面发生滑动,这一变形的结果使蠕变曲线向较大变形的一侧反弯,进入不稳定状态,最后使晶界松散、脱落,导致材料的破裂。
一般认为,岩盐层的塑性变形在低温状态是以晶层滑动为主,而在高温下则在滑动面出现多边形结构和再结晶。由于岩盐层的塑性变形(蠕变)引起井眼缩径,常导致起下钻遇阻卡、卡钻。例如中原油田文-218井使用密度为1.79g/cm3钻井液,钻进岩盐层至3912m时,从电测得知在3856~3899m井段井径缩小18%~23%(比钻头直径小40~50mm)。继续电测时又发生遇阻,下钻划眼至3912m,后上提遇卡。又如南疆库喀-1井在电测时曾多次在2735~2732m遇阻,经反复划眼后测得井径仅为135mm(钻头直径为215mm)。因此,岩盐层的蠕变或塑性变形是钻进该类地层时造成井下复杂情况的一个重要原因。
此外,盐膏层中的泥岩即使在上覆盖层压力与井温作用下,黏土表面所吸附的四层水会逐渐被挤出成为孔隙水。由于泥岩表面吸附水的密度可高达1.40~1.70g/cm3,故当这些层间水变为孔隙水时,体积增大40%~70%。若泥岩被盐层所封闭,而盐层不具备渗透性能,水无处可排,因而会导致在两个盐层之间的泥岩孔隙中形成异常压力带。钻开此类地层时,如果钻井液液柱压力低于此类泥岩发生塑性变形的压力,泥岩就会缩径,导致井下复杂情况。由于此类泥岩含盐,盐在高温高压下所发生的塑性变形亦会对含盐泥岩带来影响。因此,盐膏层塑性变形不仅发生在岩盐中,而且还会发生在含盐泥岩中。
(5)钻井液密度过高
钻井过程中,如所采用的钻井液密度过高,大大超过地层孔隙压力,就会对井壁形成较大的压差,从而会有更多的钻井液滤液进入地层,加剧地层中黏土矿物水化,引起地层孔隙压力增加及围岩强度降低,最终导致地层坍塌压力增大。当坍塌压力的当量密度超过钻井液密度,井壁就会发生力学不稳定,造成井塌。特别是在钻入高破碎性地层时,如所使用的钻井液密度合适,则围绕井壁的应力集中,闭合了所有的径向接合面,因此封闭了井壁,钻井液不能进入到裂隙网内;但如果钻井液密度增高并超过了临界值,径向接合面逐渐由闭合状态变为开启状态,与此同时切向接合面闭合。此时由于钻井液进入,引起地层孔隙压力增高,一部分裂隙网变得易被钻井液侵入,相应的结合面被增压,单元变得松散,这样岩石就容易受到钻井液和井底钻具组合的冲击而坍塌。由上述原因所引起的井壁不稳定大多发生在深部地层,与岩性关系不大。例如,柯深1井古近-新近系地层是砂泥岩互层,其5200~5750m井段的孔隙压力系数为1.50~1.60g/cm3,坍塌压力的压力系数为1.60~1.70g/cm3;5750~5900m井段的孔隙压力系数为1.15~1.35g/cm3,坍塌压力的压力系数为1.40~1.60g/cm3。该井田244mm技术套管下至5025.08m。四开钻进时,由于误判5009m出现的高压盐水层(压力系数为1.89g/cm3)没有封死,为了对付地质预告5600m的高压气层,采用密度为1.95~2.02g/cm3的钻井液钻进。钻至5441m时,钻进过程出现大的塌块,下钻遇阻划眼,返出大的塌块。从此之后每次下钻均遇阻划眼,划眼井段均为新钻井眼。当钻至5829m时,发生压差卡钻。解卡后,为了防止再卡钻,降低钻井液密度至1.75~1.80g/cm3,并增加钻井液中高软化点低磺化度磺化沥青、氯化钾、SMP和硅酸钾的加量,以提高钻井液封堵与抑制能力,井塌缓解。
3.3.2 物理化学因素
3.3.2.1 地层的岩性
井壁不稳定可以发生在各种岩性的地层中。一般来讲,岩石均由非黏土矿物(如石英、长石、方解石、白云石、黄铁矿等)、晶态黏土矿物(如蒙脱石、伊利石、伊蒙间层、绿泥石、绿蒙间层、高岭石等)和非晶态黏土矿物(如蛋白石等)所组成,但不同岩性地层所含的矿物类型和含量不完全相同。对井壁稳定性产生影响的主要组分是地层中所含的黏土矿物。
3.3.2.2 钻井液滤液对地层的侵入
当地层被钻开后,在井筒中钻井液与地层孔隙流体之间的压差、化学势差(取决于钻井液与地层流体之间的活度差和地层的半透膜效率)和地层毛细管力(取决于岩石的表面性质)的驱动下,钻井液滤液进入井壁地层,引起地层中黏土矿物水化膨胀,导致井壁不稳定。
通过大量室内试验,目前已证实在使用水基钻井液时,低渗透泥页岩表面的确存在着非理想的半透膜,但其膜效率低于1。其值高低取决于钻井液的组成、地层的渗透率和孔喉尺寸,并随钻井液与岩石接触时间增长而降低。盐水的膜效率仅为1%~10%,聚合醇类水基钻井液具有较高的膜效率,地层中的黏土矿物与水接触发生水化膨胀是由两种水化所造成,即表面水化和渗透水化。
(1)影响水化的因素
影响地层水化作用的主要因素有以下方面:
1)地层中黏土矿物及其可交换阳离子的类型和含量。由于蒙脱石、伊利石、高岭石、绿泥石各种黏土矿物的组构特征不同,其可交换阳离子组成亦各不相同,因而其水化膨胀程度差别很大。如蒙脱石的阳离子交换容量高,易水化膨胀,分散度也较高;而高岭石、绿泥石、伊利石都属于低膨胀型黏土矿物,不易水化膨胀。同种黏土矿物,当其交换性阳离子不同时,水化膨胀特性也不相同,如钠土的膨胀比钙土、钾土大得多。各种黏土矿物膨胀能力的顺序如下:蒙脱石>伊蒙间层矿物>伊利石>高岭石>绿泥石。
由此看来,地层的水化作用强弱主要取决于地层中所含黏土矿物及其可交换阳离子的类型及含量。此外,由于地层中非晶态黏土矿物的类型及含量会影响阳离子交换容量的大小,因此它们对地层水化作用亦有较大的影响。
2)地层中所含无机盐的类型及含量。如地层中含有石膏、氯化钠和芒硝等无机盐,则会促使地层发生吸水膨胀。当地层中含有无水石膏时,由于密度为2.9g/cm3的CaSO4能通过吸水转变为密度为2.3g/cm3的CaSO4·2H2O,其体积增加约26%,因而含膏泥岩的膨胀性与其中无水石膏含量有密切关系。
含氯化钠的泥岩的初始膨胀率较高,在5~7h达到最大值。随着盐的溶解,膨胀率反而下降。中原油田文203-12井3250m的含盐泥岩,2h的膨胀率为31%,但24h的膨胀率降为26%。用胜利油田红层中的含盐泥岩进行吸水试验,然后用淡水洗去泥岩中的盐再次吸水,其结果显示含盐泥岩的吸水量大大高于不含盐泥岩。
3)地层中层理裂隙发育程度。地层中存在着层理裂隙,部分微细裂缝在井下高有效应力作用下会发生闭合。但当与水接触时,水仍然会沿着这条裂缝进入地层深处,使井壁周围地层中的黏土矿物发生水化,因而井壁也容易坍塌。
4)温度和压力。流体进、出泥页岩是受泥页岩和流体的偏摩尔自由能之差来控制的,而偏摩尔自由能的大小与温度和压力有关。因此,温度和压力对泥页岩的水化膨胀会产生一定影响。随着温度升高,黏土的水化膨胀速率和膨胀量都明显增高。压力增高可抑制黏土水化膨胀。各种黏土矿物的膨胀率均随预负荷或井眼压力的增大而急剧下降。
5)时间。显然,黏土水化膨胀随地层中的黏土矿物与钻井液滤液接触时间的增长而加剧,这对于科学超深井取心钻探来说,减少起下钻的次数和时间对井壁稳定十分有利。
6)钻井液的组成与性能。钻井液中所含有机处理剂和可溶性盐的类别及含量、滤液的pH值等均会影响黏土的水化膨胀,这些影响对于科学超深井来说是至关重要的研究课题之一。
(2)地层水化膨胀对井壁稳定的影响
钻井过程中,钻井液与井壁地层之间的接触会产生非常复杂的物理化学作用。概括起来,钻井液对地层的影响主要表现在以下方面:
1)孔隙压力升高。钻井液滤液进入地层后,由于压力传递和滤液与地层黏土矿物之间通过水化作用产生水化应力,均会引起井壁地层孔隙压力的升高。
2)地层含水率升高。近井壁地带地层力学性质发生变化钻井液滤液进入地层后,会引起地层中含水量升高,从而导致地层的力学性质发生一系列的变化。如弹性模量随地层含水量的增大而急剧降低;泊松比值随地层含水量的增大而增加;地层的强度参数黏聚力和内摩擦角则随地层含水量的增大而下降。
综上所述,由于地层中所含的黏土矿物吸水发生水化膨胀,产生水化应力,改变了井筒周围地层的孔隙压力与应力分布,从而引起井壁岩石强度降低,地层坍塌压力发生变化。当井壁岩石所受到的周向应力超过岩石的屈服强度时,就会发生井壁不稳定。因此可以说,井壁不稳定是物理化学因素与力学因素共同作用所导致的结果。
3.3.3 钻井工程措施
钻井工程措施也对井壁稳定性产生影响。
(1)井内激动压力过大
钻井过程中,如果起下钻速度过快、钻井液静切力过大、开泵过猛、钻头泥包等原因,均可能发生强的抽吸作用,产生过高的抽吸压力,从而降低钻井液作用于井壁的压力,造成井塌。
(2)井内液柱压力大幅度降低
钻井过程中如果发生井喷、井漏或起钻没灌满钻井液均可能造成井内液柱压力大幅度下降,造成井壁岩石受力失去平衡而导致井塌。
(3)钻井液对井壁的冲蚀作用
如果钻井液环空返速过高,在环空形成紊流,则会对井壁产生强烈的冲蚀作用。此作用随环空返速增大而加剧。对于含大量蒙脱石或伊蒙无序间层且成岩程度低、胶结差的软泥岩,钻进过程中会因吸水膨胀而造成井径缩小,此时若提高环空返速,采用紊流钻进,及时冲刷掉缩径的岩石,使井径不至于小于钻头直径,可有效地防止缩径卡钻。但是,当钻进破碎性地层或层理裂隙发育的地层时,如果钻井液的环空返速过高导致形成紊流,则对井壁的冲刷力有可能超过被钻井液浸泡后的岩石强度,这时就会造成井壁坍塌。例如华北二连的阿南构造和吉林的乾安构造,均采用钾基聚合物和钾盐防塌钻井液钻进。在钻至易坍塌层段时,钻井液在环空处于层流时的平均井径扩大率小于10%;而处于紊流状态时,则由于井塌,井径扩大率高达30%以上。
(4)井身质量差
如井眼方位变化大,狗腿度过大,易造成应力集中,加剧井塌的发生。
(5)对井壁过于严重的机械碰击
钻进易塌地层时,如转速过高、起钻用转盘卸扣,由于钻具剧烈碰击井壁,从而加速井塌。
综上所述,在钻井过程中,如果影响井壁稳定性的一些工程措施不当,有可能降低钻井液作用在井壁上的压力和岩石强度,导致井壁不稳定。
关于“井斜角的计算方式”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[逸尘尘]投稿,不代表欧拉号立场,如若转载,请注明出处:https://ooplay.net/oula/1878.html
评论列表(3条)
我是欧拉号的签约作者“逸尘尘”
本文概览:网上有关“井斜角的计算方式”话题很是火热,小编也是针对井斜角的计算方式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。井斜计算最新国内外...
文章不错《井斜角的计算方式》内容很有帮助